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Abstract 
The high mutation rate of the influenza virus is one of the key reasons, not only requires constant 
vaccine updates, but the newest vaccines may be ineffective. This report describes a case of 
influenza virus infection, strain H3N2 covered by the vaccine, in a vaccinated individual. 
Haemagglutinin gene deep sequencing data obtained from suspected source of infection and from 
three isogenic controls were examined. Five high-frequency (>98%) SNPs, all silent, and 16 low-
frequency (<1%) SNPs were found in the patient sample. A mean sequencing error rate of 0.25 ± 
0.07% was calculated for three controls. This allowed us to separate two true mutations with 
frequencies of 0.84% and 0.94% from the erroneous ones (<0.25%). The first is silent, but the 
second results in a P103S substitution in epitope D of the haemagglutinin. This may account for 
the vaccination ineffectiveness. 
 
Introduction 
Influenza virus is among the most significant pathogens, leading the way in mortality from 
infectious diseases and results in an estimated 250,000 to 500,000 deaths every year [1,2]. 
 
Vaccination is an effective way of disease control [3,4]. Because the virus is rapidly mutating, 
vaccines need to be constantly updated to maintain effective protection. 
 
When viral RNA is transcribed, error-prone polymerase provides genetic changes that result in 
new variant strains, a process known as antigenic drift [5]. The main mutation target is the surface 
hemagglutinin glycoprotein (HA). It binds to sialic acid on surface glycoproteins and glycolipid, 
allowing effective contact with cells [6]. HA is the primary target of antibodies that provide 
protective immunity to influenza viruses. It contains several epitopes that serve as targets for the 
development of modern vaccines. Thus, mutations in HA allow the virus to avoid the immune 
response of the infected organism [7]. 
 
Such genetic features ensure the formation of so-called subpopulations: diverse subsets of viral 
particles of the same strain that possess a distinct genotype and phenotype [8]. Because the 
frequency of occurrence of a genotype in a particular population can be very low, deep sequencing 
methods are required to detect them, allowing for sequencing errors with conventional coverage 
[9]. This approach requires distinguishing between low frequency biological variants and 
sequencing errors. This can be achieved by assessing the occurrence of sequencing errors in 
isogenic samples. 
 
The aim of this work was to detect rare mutations that could provide to viral subpopulations anti-
immune protection based on the analysis of data from deep targeting sequencing of the HA protein. 
 
Materials and methods 
 
Data accession 
The Influenza A virus (H3N2) hemagglutinin gene (GenBank No KF848938.1) was utilized as a 
reference [10]. 
 
Raw reads from patient’s material [11] and three isogenic controls obtained from The European 
Nucleotide Archive [12–14]. Control amplicon was generated from a signle clonally derived 
plasmid with the HA gene. 
 
Data preprocessing 
FastQC v0.12.1 was used to control the quality of raw reads [15]. 
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Reads mapping and variant calling 
Reads mapping against a reference HA gene was performed by BWA 0.7.17-r1188 with BWA-
MEM algorithm [16]. 
 
Mpileup file was generated using samtools 1.18 [17], command “mpileup” used with “--max-
depth” parameter values as described below. 
 
Subsequent variant calling was performed by VarScan v2.3 [18], command “mpileup2snp” used 
with “--min-var-freq” parameter values 0.95 or 0.001. 
 
IGV 2.16.2 was used for data visualization [19]. 
 
Results 
 
Data assessment 
The phred quality of raw reads is quite high. A lot of duplicates are normal because of deep 
coverage for a short target region. Therefore, no additional reads trimming was carried out. 
 
Quantification of Aligned Reads 
Table 1 presents read mapping statistics, showcasing the number of reads, those successfully 
mapped to the reference, and the corresponding percentage for the experimental and three control 
samples. The high mapping percentages indicate robust alignment to the reference genome across 
all samples. 
 
Table 1. Read mapping statistics for experimental and control samples 

Data Number of reads Mapped to the 
reference reads Percentage 

Experimental sample 1433060 361116 99.94% 
Control_1 1026344 256658 99.97% 
Control_2 933308 233375 99.97% 
Control_3 999856 250108 99.97% 

 
 
Sequencing Depth Analysis: Comparative Average Coverage of Experimental and Control 
Samples 
Table 2 presents the average coverage values resulting from read alignment for the experimental 
sample and three control samples. The experimental sample exhibits a higher average coverage at 
31212.7, suggesting robust sequencing depth compared to the control samples. 
 
Table 2. Average coverage values obtained after reads alignment 

Data Value 
Experimental sample  31212.7 

Control_1  22630.8 
Control_2  20655.5 
Control_3  22048.1 

 
Optimizing Variant Calling: Impact of Coverage Depth on SNP Detection Using 'samtools 
mpileup' 
Table 3 displays the results of assessing the optimal coverage depth for generating a pileup file in 
variant calling using the "samtools mpileup" command. The table reveals the number of identified 
single nucleotide polymorphisms (SNPs) at different "--max-depth" parameter values, 
demonstrating an incremental trend in SNP detection with increasing coverage depth. 
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Table 3. Determining the optimal coverage depth for forming a pileup file for variant calling. 

“--max-depth” parameter value Found SNP (VarScan results for 0.1% 
frequency) 

30’000 16 
35’000 18 
40’000 20 
50’000 21 
60’000 21 

 
Variant Frequencies in Isogenic Controls 
Table 4 provides insights into the variant frequencies within isogenic controls, presenting the total 
number of single nucleotide polymorphisms, their respective frequencies (in percentage), and the 
associated standard deviations (SD). The data highlights the consistency of SNP occurrence across 
samples, aiding in the characterization of genetic variability in isogenic backgrounds. 
 
Table 4. Variants frequency in isogenic controls 

Sample No Total SNP number Frequency, % SD 
1 57 0.26 0.08 
2 52 0.24 0.06 
3 61 0.25 0.08 

 
Genetic Variants Analysis 
Table 5 details the variants identified in the experimental sample, providing information on the 
reference base, genomic coordinates, alternative bases, variant frequencies in percentage, and their 
corresponding status. Notably, the table indicates potential sequencing errors, silent mutations, and 
missense mutations, shedding light on the genetic alterations present in the analyzed sample. 
Figure 1 provides detailed visual information on missense mutation. 
 
Table 5. Variants found in experimental sample 

Reference Coordinate Alternative Frequency, % Mutation type 
A 254 G 0.17 Sequencing error 
A 276 G 0.17 -//- 
T 340 C 0.17 -//- 
A 691 G 0.17 -//- 
A 744 G 0.17 -//- 
A 859 G 0.18 -//- 
A 1043 G 0.18 -//- 
T 1280 C 0.18 -//- 
T 915 C 0.19 -//- 
A 722 G 0.2 -//- 
A 1086 G 0.21 -//- 
T 389 C 0.22 -//- 
A 1213 G 0.22 -//- 
A 802 G 0.23 -//- 
T 1458 C 0.84 Silence 

C 307 T 0.94 Missense 
(Pro103Ser) 

C 117 T 99.82 Silence 
C 999 T 99.86 -//- 
A 1260 C 99.94 -//- 
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A 72 G 99.96 -//- 
T 774 C 99.96 -//- 

 
Figure 1 Specification of Missense (Pro103Ser) mutation in IGV 

 
 
Discussion 
 
The emergence of influenza virus variants that evade vaccine-induced immunity poses a 
significant challenge to public health. In this study, deep sequencing of the hemagglutinin gene 
from a patient infected with an H3N2 influenza virus, despite prior vaccination, revealed subtle 
genetic changes that may contribute to vaccine ineffectiveness. Our analysis identified two 
mutations with frequencies of 0.84% and 0.94%, one silent and the other resulting in a 
Pro103Ser substitution in epitope D of the HA. 
 
Epitope D is a critical region of the HA protein targeted by the immune system for generating 
protective antibodies. The Pro103Ser substitution observed in our study is of particular 
significance, as it occurs within this epitope. This mutation introduces a change in the amino acid 
sequence, potentially altering the conformation of the epitope and affecting the binding affinity 
of neutralizing antibodies. Previous studies have emphasized the importance of epitope 
variability in influenza virus immune evasion [20,21]. 
 
To determine the likelihood of these mutations being genuine biological variants and not 
sequencing errors, we implemented a rigorous approach. By calculating a mean sequencing error 
rate of 0.25 ± 0.07% from isogenic controls, we established a threshold to differentiate true 
mutations from background noise. Variants with frequencies exceeding this threshold were 
considered biologically relevant. This method ensures the specificity of mutation calls and 
minimizes the inclusion of false positives, a crucial consideration in deep sequencing studies 
[22,23]. 
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Despite vaccination, our results suggest that the identified mutations allowed the virus to escape 
immune surveillance, leading to breakthrough infection. The vaccine's inability to confer 
complete protection against all viral strains is well-documented due to the high mutation rate of 
influenza viruses, necessitating frequent vaccine updates [24]. In today's world, this is quite a 
serious problem, but there is already an example of improving vaccine efficacy: finding new 
target epitopes with high conservativity [25]. 
 
To enhance the reliability of deep sequencing experiments and control for potential errors, 
implementing additional measures will be optimal. One approach involves increasing sequencing 
depth, as this can improve the accuracy of variant detection, especially for low-frequency 
variants [26]. Moreover, incorporating unique molecular identifiers during library preparation 
can help distinguish true variants from PCR or sequencing errors, reducing false positives [27]. 
Additionally, leveraging error correction algorithms in bioinformatics pipelines, such as those 
integrated into tools like LoFreq and FreeBayes, can further enhance the precision of variant 
calling [28,29]. 
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