

Culture-independent methods for qualitative and quantitative microbiological detection and identification

llia Popov

 Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia

Introduction

Culture-Independent methods	Culture-dependent methods
Do not require culture on nutrient media	Based on the growth of colonies in culture
Rely on analysing the genetic material of microorganisms or their protein components +++ Allows for faster and more accurate results	 have some limitations, such as: long culture times the inability to detect and identify unknown or slow-growing microorganisms

Overview of CIMs

Can Su et al., Culture-independent methods for studying environmental microorganisms: methods, application, and perspective, Appl Microbiol Biotechnol, 2012

PCR

- Polymerase chain reaction is a technique that allows specific
 regions of a microorganism's DNA to be amplified to detectable levels
- It can be used to detect and identify specific microbial species from unique sequences of their genetic material

PCR Components

How does PCR work?

PCR: pros and cons

+	
High sensitivity	Risk of contamination
High specificity	Amplification bias
Rapidity	
Multiplexing	Limiting the length of the fragment to be amplified

DNA/RNA Hybridization

- Hybridization is the process in which two complementary single-stranded DNA and/or RNA molecules bond together to form a double-stranded molecule
- The bonding is dependent on the appropriate basepairing across the two single-stranded molecules
- Hybridization is an important process in various research and clinical laboratory techniques.

Hybridization: pros and cons Specificity of detection Limited method High sensitivity Exploring the genetic structure **Risks of contamination** Genetic linkage analysis

Fluoresence in situ hybridization (FISH)

 FISH: This method uses probiotic molecules (samples) containing complementary DNA or RNA sequences to bind to specific genetic sequences in microorganisms

 Samples are labeled with fluorescent tags, allowing visualisation and identification of microorganisms under a microscope.

FISH: pros and cons

+	
Microbial detection and identification	Limitation in the number of target organisms
Simplicity and speed	Possibility of cross-reaction
Spatial information	Restrictions on the structure of the samples
High sensitivity	Limited quantitative analysis

Mass spectrometry

Magnet

Magnetic field

 Mass spectrometry in microbiology is used to analyse and identify microorganisms, analyse their
 biomolecules and study their metabolic processes

 It can provide information on the composition, structure and function of:

- proteins
- nucleic acids
- lipids
- other molecules in microorganisms

How does it work?

Mass spectrometer

Workflow

Mass spectrometry: pros and cons

+	
High sensitivity	Complexity and equipment requirements
High precision and resolution	Sample preparation
Identification and structural analysis	Limitations on sample size
Multiplexing	Interpretation of results

Enzyme-linked immunosorbent assay (ELISA)

- ELISA is an immunological assay commonly used to measure antibodies, antigens, proteins and glycoproteins in biological samples
- Each ELISA measures a specific antigen, and kits for a variety of antigens are widely available

ELISA: pros and cons

+	
High sensitivity and specificity	Possibility of cross-reaction
Wide range of applications	Limited diversity of antigens
Simplicity and speed	Possibility of false results
Quantitative analysis	Need for specialised equipment and reagents

Next Generation Sequencing (NGS)

- NGS is a technology that enables fast and efficient sequencing of DNA or RNA samples. It allows millions of DNA or RNA fragments to be sequenced in parallel, making a significant impact on the speed and scope of analysis possible.
- NGS has a wide range of applications in microbiology, enabling a better understanding of the genetic information and diversity of microorganisms, which contributes to a better understanding of microbiological processes and their role in biological systems.

NGS: pros and cons

+	
High speed and high capacity	Errors and inaccuracies
High resolution capability	High costs
Discovery of new microbial species and genes	Headache with analysing the data

Culture-independent methods for qualitative and quantitative microbiological detection and identification

llia Popov

 Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia